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CREEP AND STRESS RELAXATION IN A PLATE

LOADED ALONG THE CONTOUR

OF A CIRCULAR HOLE

UDC 539.376V. M. Chuiko and V. M. Yarushina

Analytical solutions of the creep and stress-relaxation boundary-value problems of a plate loaded
externally along the contour of a circular hole are obtained using an unsteady creep model based on
nonclassical representations for elastic and viscous properties of materials. It is assumed that one
force component and one displacement component are specified at the boundary.
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1. Basic Relations of the Model. As was noted in [1], the equations of the classical theory of elasticity
follow from the assumptions

eij =
∂U

∂σij
, U = U1(σ) + U2(Σ) =

3(1− 2ν)
2E

σ2 +
1 + ν

3E
Σ2,

σ = σkk/3, Σ =
√

3/2{(σ1 − σ)2 + (σ2 − σ)2 + (σ3 − σ)2}1/2,

(1.1)

where eij and σij are the components of the strain and stress tensors, respectively, σ1, σ2, and σ3 are the principal
values of the stress tensor, E is Young’s modulus, and ν is Poisson’s ratio. The specific quadratic dependence of
the Gibbs potential U on the stress-tensor invariants σ and Σ yields the classical linear isotropic Hooke’s law for an
elastic medium. The stress-tensor invariant Σ is a homogeneous function of its arguments σi−σ. Ivlev [1] suggested
to consider other possibilities of determining Σ with the homogeneity property being retained. An important role
belongs here to the piecewise-linear relations

Σ = max |σi − σj |; (1.2)

Σ = (3/2)max |σi − σ|. (1.3)

These relations constrain the possible choice of Σ. Indeed, the surfaces Σ = const determined by dependences (1.2)
and (1.3) in the principal-stress space are hexagonal prisms with the generatrices parallel to the straight line
σ1 = σ2 = σ3. Their cross sections in the deviatoric plane σ1 + σ2 + σ3 = 0 are shown in Fig. 1. The outer and
inner hexagons are described by functions (1.3) and (1.2), respectively. It was shown in [2] that all possible convex
surfaces Σ = const should lie between these two prisms. Thus, dependences (1.2) and (1.3) are of interest as the
limiting cases.

Bykovtsev and Yarushina [3] stated that creep of materials can be described using similar relations. They
assumed that

eij = ee
ij + ev

ij , (1.4)
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where eij are the small total strains of the medium and ee
ij and ev

ij are the components of the elastic-strain and
creep-strain tensors, respectively. The elastic strains were taken in the form (1.1) and the creep strains were given
by

ėv
ij =

dev
ij

dt
=

∂V

∂σij
, V = V (Σ). (1.5)

In particular, the creep-rate potential can be written as

V =
B

n+ 1
Σn+1.

In this case, creep occurs in accordance with the Norton power law. The properties of the model relations are
discussed in detail in [3, 4].

We consider an infinite thin plate with a circular hole of radius r0 which is in equilibrium under the action
of forces applied to the hole contour. The plane stress state of the plate is implied. Below, we consider the following
boundary-value problems.

1. A rigid punch is pressed into the hole of the plate, which deforms in such a manner that the radial
displacements of the contour are known and remain unchanged. Over the entire plate, stress relaxation occurs, and
irreversible creep strains are accumulated. The shear stresses vanish on the contour:

ur

∣∣∣
r=r0

= u(θ), σrθ

∣∣∣
r=r0

= 0. (1.6)

Hereinafter, (r, θ) are polar coordinates and ui are the displacement-vector components.
2. Under the action of tangential forces and a constant pressure applied to the hole, the circular hole is

twisted so that the tangential displacement is known:

uθ

∣∣∣
r=r0

= v(θ), σrr

∣∣∣
r=r0

= P = const. (1.7)

In both cases, it is assumed that stresses in the entire plate satisfy the condition

σ1 = −σ2 < σ3 = 0. (1.8)

Moreover, it is assumed that there are no irreversible strains in the plate at the initial time t = 0. The temperature
remains unchanged during the entire process. The forces acting at the contour are self-balanced. At infinity, the
stresses and displacements vanish.

2. Derivation of the Resolving Equations of the Problem. Burenin and Yarushina [4] showed
that, if the stress belongs to the edge of the piecewise-linear surface Σ = const, the plane stress state is statically
determinable. They also studied the special features of the model relations at different facets and edges of the
surface Σ = const.

582



We note that condition (1.8) implies that stresses belong to the edge of the piecewise-linear surface (1.3)
formed by the intersecting facets

Σ = 3(σ − σ1)/2, Σ = 3(σ2 − σ)/2. (2.1)

Since σ3 = 0, Eqs. (2.1) can be considered as a system of two algebraic equations with two unknowns σ1 and σ2.
Resolving this system, we obtain

σ1 = −2Σ/3, σ2 = 2Σ/3.

In this case, the stress-tensor components can be written as

σ11 = −σ22, σ22 = (2Σ/3) cos 2ϕ, σ12 = −(2Σ/3) sin 2ϕ, (2.2)

where ϕ is the angle between the first principal direction of the stress tensor and the Ox1 axis. Thus, the number
of independent static unknowns in the problem is reduced by one. By virtue of the first relation in (2.2), in the
absence of body forces, the equations of equilibrium become

−σ22,1 + σ12,2 = 0, σ12,1 + σ22,2 = 0. (2.3)

Conditions (2.3) are the Cauchy–Riemann conditions of analyticity of the function

f(z, t) = σ22 + iσ12 (2.4)

of the complex variable z = x1 + ix2. All static quantities can now be expressed in terms of the stress function (2.4).
As only two of them are independent, we write these equations only for Σ and ϕ:

Σ = 3|f(z, t)|/2, cos 2ϕ− i sin 2ϕ = f(z, t)/|f(z, t)|.

Using relations (1.1)–(1.5), we find the kinematic quantities of the problem:

ee
ij =

1
3
U ′1(σ)δij + U ′2(Σ)

( ∂Σ
∂σ1

lilj +
∂Σ
∂σ2

mimj

)
, ėv

ij = V ′(Σ)
( ∂Σ
∂σ1

lilj +
∂Σ
∂σ2

mimj

)
(2.5)

(li and mi are the direction cosines of the stress tensor). At the corner points of the surface Σ = const, which
include the point of the actual stress state of the problem, the derivatives ∂Σ/∂σi are indeterminate. In this case,
we use the generalized expression

∂Σ
∂σi

= α
∂Σ(1)

∂σi
+ (1− α)

∂Σ(2)

∂σi
, 0 6 α 6 1, (2.6)

where Σ(1) = const and Σ(2) = const are the surfaces that form the edge and α is a new unknown function
responsible for the viscous-flow direction. It is worth noting that this definition of the derivative at the singular
point on the stream surface Σ = const is used in the plasticity theory [2].

Supplementing (2.5) by relations (2.6) and (1.4) and relations between the total strains and displacements,
i.e.,

eij = (ui,j + uj,i)/2,

and determining the displacements as functions of the complex variables z = x1 + ix2 and z̄ = x1 − ix2 and the
time t, after elimination of the unknown function α, we obtain

u1 − iu2 = −3
4

z∫
z0

( t∫
0

V ′(Σ)
f(z, t)
|f(z, t)|

dt+ U ′2(Σ)
f(z, t)
|f(z, t)|

)
dz + ψ(z̄, t). (2.7)

The function ψ(z̄, t) can be found from the boundary conditions. To determine α, by virtue of Eqs. (1.4), (2.5),
and (2.6), we have

∂u1

∂x1
+
∂u2

∂x2
= ev

11 + ev
22 +

2
3
U ′1(σ) + U ′2(Σ)

(
α− 1

2

)
,

ėv
11 + ėv

22 = V ′(Σ)(α− 1/2).
(2.8)
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The function α should satisfy not only Eq. (2.8) but also the inequality 0 6 α 6 1, which ensures that the stresses
belong to a chosen edge. If this inequality fails, the stresses belong to a facet of the piecewise-linear surface Σ = const
and, hence, one should replace Eq. (2.7) by other dependences that also follow from (2.5).

3. Solution of the Problems. Before solving each particular boundary-value problem formulated in
Sec. 1, we make some general conclusions. To determine the stresses in the plate, it is convenient to expand the
function f(z, t) into the Laurent series in the neighborhood of an infinitely distant point:

f(z, t) =
∞∑

m=−∞
am(t)zm. (3.1)

Since it is assumed in both problems that no loads are applied to the plate at infinity, expansion (3.1) should contain
only the regular part

f(z, t) =
∞∑

k=1

ak(t)z−k. (3.2)

The loads acting on the plate are assumed to be self-balanced, which implies that

−F1 + iF2 =

2π∫
0

f(r eiθ, t) eiθ dθ =
2πa1

r
= 0, (3.3)

where F1 and F2 are the components of the principal vector of external forces. It follows from Eq. (3.3) that a1 = 0.
The boundary conditions (1.6) and (1.7) determine the stress-tensor and displacement-vector components

in polar coordinates. We write these components as

σθθ + iσrθ = f(z, t) e2θi, σrr = −σθθ,

ur − iuθ = (u1 − iu2) eθi . (3.4)

To solve the problem subject to the boundary conditions (1.6), we first rewrite the boundary conditions with
allowance for Eq. (3.4) as

Re {(u1 − iu2) eiθ}
∣∣∣
r=r0

= u(θ), Im f(r0 eiθ, t) e2θi = 0, (3.5)

which implies that the Laurent series expansion (3.2) of the stress function is such that all coefficients are ak = 0
except for a2 = P , which is a real function of time. Thus,

f(z, t) = P (t)/z2. (3.6)

Integrating the relation for displacements (2.7) with allowance for (3.6), we obtain

u1 − iu2 =
M

z̄n−1zn

t∫
0

|P |n−1P dt+N
P

z
+ ψ(z̄, t),

where M = (3/2)n+1B/(2n) and N = 3/(8µ). Expansion of ψ(z̄, t) into the Laurent series yields

ψ(z̄, t) =
∞∑

k=1

bk(t)z̄−k. (3.7)

To determine the coefficients bk(t) of this expansion and the unknown function P (t), we use the first condition
of (3.5). On the contour of the circular hole, we have

u(θ) = b0 + Re
∞∑

k=1

bk
rk
0

e(k+1)θi, (3.8)

where b0 is given by

b0 =
M

r2n−1
0

t∫
0

|P |n−1P dt+N
P

r0
. (3.9)
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Relation (3.8) is the Fourier series expansion of the real function. The coefficients of this expansion are determined
by the formulas

b0 =
1
2π

π∫
−π

u(θ) dθ, bk =
rk
0

π

π∫
−π

u(θ) e−(k+1)θi dθ, k > 1.

Using (3.9), we obtain the unknown function P (t):

P (t) = ±
{M
N

n− 1
r2n−2
0

t+
∣∣∣ N
b0r0

∣∣∣n−1}1/(1−n)

. (3.10)

In (3.10), the plus refers to b0 > 0, which is the case where a punch is pressed into a hole whose diameter is smaller
than that of the punch; the minus refers to the case where the circular hole in the plate is stretched instantaneously
over a rigid rod whose diameter is smaller than that of the hole (b0 < 0). In both cases, the absolute values of
stresses in the plate decreases, which shows that the solution constructed does describe the stress relaxation.

To determine the applicability limits of the solution constructed, we find the function α as the solution of
system (2.8):

α(R, γ, θ) =
1
2
∓ 3

2
γ − 1
γ

n− 1
n

(1−Rγ)− 3
2
Rγ Re

∞∑
k=1

kbk
|b0|

(γ − 1
n

)(k−1)/(2n−2) e(k+1)θi

rk
0

. (3.11)

Here R = NP/(r0b0) and γ = n(r0/r)2n−2 + 1. In (3.11), the minus and plus refer to the cases with b0 > 0 and
b0 < 0, respectively.

Below, we confine our analysis to the solution where b0 and b1 are real numbers and other coefficients are
bk = 0. In this case, the hole becomes an ellipse with the semiaxes

a = r0 + b0 + b1/r0, b = r0 + b0 − b1/r0.

The inequality 0 6 α 6 1, which ensures the adequacy of the constructed solution, is satisfied in the entire plate
provided that

γ − 1
γ

n− 1
n

(1−Rγ) +
b1

r0|b0|
Rγ 6

1
3
, (3.12)

as it follows from (3.11). We note that 0 < R 6 1 and 1 < γ 6 n + 1. For R = 1, i.e., at the initial time,
inequality (3.12) is valid if 3b1 6 r0|b0|, which means that the semiaxes of the ellipse pressed should satisfy the
inequality ∣∣∣ a− b

a+ b− 2r0

∣∣∣ 6
1
3
.

The expression in the left side (3.12) reaches the extremum for γ = n + 1, i.e., at the edge of the hole; therefore,
inequality (3.12) is satisfied in the entire plate for R∗ 6 R 6 1, where

R∗ =
{2

3
(2− n)r0|b0|

b1(n+ 1)− r0|b0|(n− 1)

}1/(n+1)

. (3.13)

This implies that the plate behavior is described by the constructed solution until a certain time t∗, which can be
readily found from relations (3.10) and (3.13). For t > t∗, the stress state cannot correspond to the chosen edge in
the entire region.

To construct the solution of the problem with the boundary conditions (1.7), we rewrite its boundary
conditions as

Im {(u1 − iu2) eiθ}
∣∣∣
r=r0

= −v(θ), Re {f(r0 eiθ, t) e2θi} = −P. (3.14)

Expanding the function f(z, t) into the Laurent series (3.2), by virtue of (3.14), we obtain

f(z, t) = {−P + iτ(t)}r20/z2.
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In this case, the equation for displacements (2.7) becomes

u1 − iu2 = M
r2n
0

znz̄n−1

t∫
0

(P 2 + τ2)(n−1)/2(−P + iτ) dt+N
r20
z

(−P + iτ) + ψ(z̄, t).

Using expansion (3.7) for ψ(z̄, t), we find

b0 = Mr0

t∫
0

(P 2 + τ2)(n−1)/2τ dt+Nr0τ = − 1
2π

π∫
−π

v(θ) dθ,

bk = −r
k
0

π

π∫
−π

v(θ) e(k+1)θi dθ.

(3.15)

The unknown shear stress τ(t) can be determined from the first equation of (3.15). In the case where P = 0, i.e.,
the hole contour is free from compressive stresses, we obtain

τ(t) = ±
{∣∣∣ b0
Nr0

∣∣∣1−n

+
M

N
(n− 1)t

}1/(1−n)

,

where the plus and minus refer to v(θ) < 0 and v(θ) > 0, respectively.
For P 6= 0, the solution of Eq. (3.15) can be written as

T = ln
ρ0

ρ
+
n− 1

4

∞∑
k=0

Γ2(k + 1)
Γ(1)

Γ2(2)
Γ(k + 2)

Γ2((n+ 1)/2 + k)
Γ((n+ 1)/2)

(−1)k

k!
(ρ2k+2 − ρ2k+1

0 ), (3.16)

where Γ(k) =

∞∫
0

e−x xk−1 dx is the gamma function. Equation (3.16) contains the dimensionless parameters

T = Pn−1tM/N, ρ = τ(t)/P, ρ0 = b0/(Nr0P ).

Figure 2 shows the curves of the shear-stress relaxation on the hole contour; curves 1, 2, 3, and 4 refer to
n = 1, 3, 6, and 8, respectively.

Finally, the direction of the normal to the stream surface Σ = const is determined by

α(ρ, ξ, θ) =
1
2

+
3
2
n− 1
n

1√
1 + ρ2

(
1−

( ρ

ρ0

)nξ2n−2)
− 3

2
ρ0

b0

1√
1 + ρ2

( ρ

ρ0

)nξ2n−2

Re
∞∑

k=1

kξk−1bk
rk
0

e(k+1)θi, (3.17)

where ξ = r0/r. At the initial time t = 0, we have

α =
1
2
− 3

2
ρ0√

1 + ρ2
0

Re
∞∑

k=1

kξk−1bk
b0rk

0

e(k+1)θi .
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As 0 6 α 6 1, the stresses in the plate correspond to the chosen edge if

ρ0√
1 + ρ2

0

∞∑
k=1

k

rk
0

|bk|
|b0|

6
1
3
. (3.18)

By virtue of Eq. (3.15), this inequality determines which displacements v(θ) should be specified on the boundary.
For t > 0 and 0 < ξ 6 1, the following constraint, which follows from (3.17), should be valid:

n− 1
n

(
1−

( ρ

ρ0

)nξ2n−2)
+

ρ0√
1 + ρ2

0

( ρ

ρ0

)nξ2n−2 ∞∑
k=1

kξk−1

rk
0

|bk|
|b0|

6
1
3
. (3.19)

The right side in Eq. (3.19) increases with increasing ξ and decreasing ρ. It reaches the maximum at the hole
boundary where ξ = 1. In this case, there exists a value of ρ∗ with which (3.18) becomes an equality. For
ρ∗ 6 ρ 6 ρ0 or, equivalently, for 0 6 t 6 t∗, the inequality 0 6 α 6 1 is satisfied in the entire plate. For t > t∗, the
relations given above fail to describe the behavior of the plate.
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